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The paper contains an analysis of the viscous damping in perforated planar microstructures that
often serve as backplates or protecting surfaces in capacitive microsensors. The focus of this work
is on planar surfaces containing an offset system of periodic oval holes or its limit cases: a system
of circular holes or of slits. The viscous damping is calculated as the sum of squeeze film and the
holes’ resistances. The optimum number of holes is determined which minimizes the total viscous
damping for a given percentage of open area. Graphs and formulas are provided for designing these
devices. In the case the open area is higher than 15% the numerical results show that the influence
of the holes’ geometry (circular or oval) has a slight influence on viscous damping. As the planar
structures containing oval holes assure a better protection against dust particles and water drops,
they should be preferred in designing protective surfaces for microphones working in a natural
environment. The obtained resuits also can be applied in designing other MEMS devices that use
capacitive sensing such as accelerometers, micromechanical switches, resonators, and tunable
microoptical interferometers. © 2004 Acoustical Society of America. [DOL 10.1121/1.1798331]

PACS numbers: 43.38.Bs, 43.38.Ks [AJZ]

I. INTRODUCTION

The work of electrostatic transducers is based on the
capacitive detection principle. Hence, two important parts of
such a device are the diaphragm, in the case of microphones,
or the proof mass in the case of accelerometers, and the
backplate electrode. The small space between these elements
is filled with fluid (air). This system of plates with the asso-
ciated air layer between them will be referred to as a planar
microstructure. On the other hand, in order to protect the
diaphragm from external damages a certain perforated planar
microstructure (for example, some gratings) may be placed
in the front of the microphone at small distance from the
diaphragm. In some design solutions a single perforated pla-
nar microstructure is used for both functions.

The gas flow between the closed parallel plates causes
viscous and inertial forces. These forces decrease the micro-
phone performance due to the noise associated with them,
and their simulation is important in predicting the device
behavior. The aim of such a simulation is to design a planar
microstructure which maximizes the capacitance and pen-
etration of sound waves and minimizes the parasitic fluid
action (the viscous damping). In the case of membrane
damping of the electrostatic transducer (sensor, microphone),
the number of holes must determine the optimal required
damping due to viscous losses in the air gap needed to obtain
a flat frequency response.

The fluid dynamics can be described in terms of classi-
cal Navier—Stokes equations for an incompressible fluid. The
special geometry of the problem, namely the small space
between the plates (squeeze-film flow), yields some simpli-
fications of the equations similar to the lubrication approxi-
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mation in classical hydrodynamics. Thus, the effect of the
inertial terms, other than the time derivative of velocities, is
negligible. The basic equation resulting from this analysis 1s
a Poisson equation; the source term contains a factor charac-
terizing the frequency dependence, another one depending
upon geometry, and also the normal velocity of the dia-
phragm.

This analysis provides first the squeeze-film damping of
the microstructure. In order to decrease the viscous damping
we consider a repetitive pattern of holes on the backplate,
each of them having its own domain of influence (also called
a “cell”). In most applications the holes are considered
circular.! The simulation in this case is simpler and in certain
applications it gives the desirable data to be used for design
purpose. An approximate formula for squeeze-film damping,
for this situation, was obtained by means of some hydraulic
considerations by Skvor.? Our studies revealed that other
geometrical shapes of the holes can be used, such as ellipses
and ovals. It is shown that the use of noncircular shapes of
the holes can provide a reduction in damping for the same
percent open area. As the elongated ovals (and the slits as a
limit case) are more likely to be obtained technologically and
can be used also for protecting purposes, in this paper we
shall focus on the study of the viscous damping in this type
of geometry of the planar microstructures. (In fact, a planar
structure involving slits was used previously in® designing
accelerometers.)

When the squeezing film and plate thicknesses are com-’
parable, as is the case of the surface-micromachined planar
microstructures, introduaction of each new hole is associated
with a ““hole resistance” which is added to the squeeze-film
damping.* The calculation of the hole resistance is obtained
by modeling the flow in a hole as a Poiseuille flow in a pipe,
described again by a Poisson equation for velocity."As the
two components of the total viscous damping have opposite
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variations with respect to the increase of number of holes,
there is an optimum number of holes which assures an equi-
librium between squeeze-film damping and holes resistance
which provides a minimum to the viscous damping coeffi-
cient. »

The developed method is applied, first, to the case of
circular holes. The case of microplanar structures containing
slits is considered in Sec. IV. In both cases there are analyti-
cal asymptotic formulas for squeeze-film damping, the holes
resistance, and the optimum number of holes, assuring a
minimum viscous damping for the microstructure. In Sec. V
the case of planar microstructures having a repetitive pattern
of oval holes is considered. The formulas for squeeze-film
damping and the holes resistance involve two coefficients
which have to be determined numerically by solving two
boundary-value problems for Poisson’s equations. By an op-
timization technique, formulas are obtained giving the opti-
mum number of oval holes and the associated minimum
value of the total damping coefficient. These formulas con-
tain two numerical coefficients, N* and B*, depending only
upon the holes’ geometry. The numerical results show that
while for small values of the ratio of the open area to the
total area, AR, all geometrical parameters of the assigned
oval pattern are important in determining the coefficient, B*,
entering in minimum viscous damping, in the case AR>0.15
this coefficient depends mainly upon the area ratio of the
pattern. The coefficient, N*, entering into the expression for
optimum number of holes, is sensitive also to the other geo-
metrical parameters. Hence, it is possible that in the case of
elongated holes the geometrical parameters other than AR
may be used for optimizing the structure based on other cri-
teria such as the number of holes, mechanical resistance, and
penetration of sound waves. Particularly, in the case of mi-
crophones working in a natural environment, it is likely that
a microplanar structure having oval holes will work better as
a protecting surface against dust particles and water drops
than a planar surface having circular holes.

The analysis of this paper is directed mainly to the
acoustical domain. The results also can be used for designing
purposes of MEMS in other applications such as
accelerometers,3’5‘7 micromechanical switches,8 various
resonators,” and tunable microoptical interferometers.'”

II. SQUEEZE-FILM DAMPING

In order to study the viscous squeeze-film damping on a
microphone, we model the air in the gap between the dia-
phragm and backplate (or between the diaphragm and the
protecting structure) as an incompressible viscous gas. We
refer the motion of the fluid at a Cartesian system whose
origin is halfway between the plates average position and the
xOy plane is paralle] to the backplate surface.

A. Equations of the fluid dynamics

The complete system of equations for describing the
motion of an incompressible viscous fluid consists of the
continuity equation and the Navier—Stokes equations

V-v=0, (1)
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av
p(EHV-V)V) =pg—Vp+uViy, ?))

where p is the density, u is viscosity, p the pressure, v de-
notes the velocity field, and g is the gravity acceleration.
In the case of simple harmonic oscillations (of w-angular
frequency), we have
iwt ~iwt ap —

P=poe 'Y, vV=v,e , E——iwp.

The system of equations (1) (2) becomes
V-v,=0, 3)

—iwpv,+p(v-V)v, =pgexp(iwt)—Vp,+uViv,.
4

We consider now dimensionless variables. As the do-
main in our case is the narrow air gap between the dia-
phragm and backplate, we will use different scales on the x,
v, and z directions

x=Lox', y=Lgy', z=dyz',

va:VOUJ,C’ UwyZVOv)/z! vwzzﬁvovz”
Po=Pee™'=Pop’,

dy being the distance between the plates at equilibrium, L, a
characteristic length of the plane domain, V| a reference ve-
locity, and e=d/Lg a small parameter. We drop the primes
and try to remember that we are now working in dimension-
less variables. To the lower order in € we obtain the equa-
tions corresponding to the lubrication approximation?

du, + du, & o, )
ox dy Jz

‘j:; + iszx=§§, ©)
a;:; +iK% y=j—[;, (7)
%11—7 =0. (8)

We have denoted

_ mVolg [Po®
Po—T, K:do —I‘:— (9)

0

B. The boundary conditions for the velocity

Since we consider the gas as a viscous fluid, the appro-
priate boundary condition is the sticking of fluid particles to
the solid walls. Hence, in dimensionless variables the bound-
ary conditions on the solid walls (the membrane and the
backplate) have the form

v(x.y,£9)=0, v,(x,y,£3=0, (10)

v(6y,=5=0, v (xy,D=w. (11)
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By w we denote the Oz component of the velocity of the
diaphragm, assumed a known quantity.

C. The representation of the velocity field

Equation (8) shows that within the lubrication approxi-
mation the pressure is constant across the gap depending
only on x and y. Therefore, Egs. (6) and (7) can be integrated
and the integration constants can be determined by using the
boundary conditions (10). There results

(1+1)
cos Kz
V2 i dp
v.(x,y,2)= — (12)
e L+i K* ox’
cos| —=
242
1+i
cos (————)Kz)
‘ V2 i dp
v,(x,y,2)= \ 1}——. (13)
Y 1+iK) K2 &y
cos| —=
2V2
Equation (5) becomes
(1+1)
cos Kz
v, V2 i 62p+52p
9z 1+i K*\ox®  ay?)’
cos| —=—K
242

The component v, results by integrating this equation
and using the first condition (11)

[ (1+D) )
sm( \/5 Kz

1+i
=K

242

1
v,=| 2+ 7—

4 < 2

(1+1)

V2

K {cos

(1+1)
242
(1+1)
K
V2

Thus, we succeed in obtaining a representation of the
velocity field of the air in the gap by means of the pressure
function, which is the main unknown function of the prob-
lem.

tan

= ey (14)

(7, T
\ axr  dy

D. The pressure equation

From the second of Egs. (11), on the upper plate, z
=1/2, the velocity component v, equals the value w defined
by the motion of the diaphragm. Thus, the relationship (14)
yields the equation for the pressure field in the form

2 2

19—[;#9—1:: 12Mw, (15)

ox ay

where we have denoted
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FIG. 1. The cell corresponding to a regular web of circular holes and its

equivalent circular cell.

(1+1) !
) tan 23 K
M=—kg?| — 2 L g |
12 (1+1)
K

2\2

Equation (15) is a Poisson-type equation. The frequency en-
ters only in the right-side term by means of the parameter M.
This will give the same dependence upon frequency for the
pressure and also for the forces resulting by pressure integra-
tion.

In the case of small values of K, a series expansion
yields

id3pow K*

=1- +0| —1.
! 10u 0 100

A simple dimensional analysis reveals that for the case of air

and frequencies between 100 Hz and 20 kHz the value M

=1 is a very good approximation.

E. Boundary conditions for the pressure

We suppose that on the backplate there is a periodic
system of holes, as shown in Fig. 1, and define a cell C as the
space occupied by a hole and its surrounding web space (the
plane region where the hole is collecting the flow). By D we
denote the domain of the hole and by D the domain of the
cell corresponding to the plate region (D=C—D"), and, fi-
nally, D' is the domain resulting from D by similarity trans-
formation given by the scaling relationship.

On the holes we have the atmospheric pressure. This
gives the condition

p=0, (16)

on the rim Cp of the holes. In the case we consider also the
holes resistance—the pressure on the rim of the hole equals a
constant (unknown) value p;.
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In order to avoid considering a boundary-value problem
for the plane domain external to the infinite number of holes,
we will take advantage of the condition on the symmetry
lines. Also, on the all symmetry lines for the pressure Cy in
the xOy plane we have the condition

op
= 0. (17)
F. Example: Squeeze-film damping for the circular
cells

We consider, for the beginning, the case where the do-
main D is an annulus of r;<r, radii. We take Ly=r, and
denote ro=r,/r,. Equation (15) becomes, in polar coordi-
nates
1 ¢/ dp

(r5)=12Mw, for ro<r<l, (18)

r or

and the associated boundary conditions can be written as

g
p(ro)=0, Z=(1)=0, (19)

The solution of Eq. (18) satisfying the conditions (19)
can be written as

2 ors 1\/7
p(r)—12Mw I— Z— n r— .

0

We have also

3 g rg 1
ffD,pdxdy=1217Mw(-8-—7+§-+51nr0).

Finally, the force on the basic domain D can be written
as

oo 1T (L(n)? L
dg 2 rs 8 ry
1 ry 3
— —Ip—— —|yPhys
2lnr2 S)W . (20)

In the case of small values of K in Eq. (9) (this means in fact
for not very high frequencies), the resulting expression coin-

cides with the formula given by Skvor in Ref. 2

4 2 4
FS__:IZTF’;”Z(l(r_I) _l(ﬂ) _llnﬁ_i)wphys
dO 2 ) 8 ry 2 ry 8

21
1. Remark

The obtained formulas for an annulus do not directly
represent the array of holes typically used in designing a
backplate. It is still possible to consider the external circle as
an approximation of a regular hexagon (of the same area)
and as a result, formula (21) can be used in the case of
circular holes uniformly located in the corners of some
squares or regular triangles for approximate calculation of
the force F* over an elementary cell.

2942 J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004

Ill. THE HOLES’ RESISTANCE

Some differences have been reported between the theo-
retically determined values of the viscous damping and the
experimentally measured values.!! One source of the errors
is considered as being the zero-pressure condition on the rim
of the holes. In the case where the thickness # of the back-
plate is comparable to the gap thickness d, the resistance of
the holes becomes an important component of the total vis-
cous damping.

A. The general case

In order to determine the “holes’ resistance” we assume
a constant pressure p; along the upper edge of the hole and
model the motion in the hole as a Poiseuille flow in a pipe
driven by the pressure gradient

__ P
az h

In this case the only nonvanishing component of velocity is
v,," and we can write the equation
_ P

Av,=—

= in D, (22)

with the Dirichlet-type boundary condition

v,=0, along Cp. (23)

The rate of flow in the domain D" can be written as

P1
QEI fﬂ‘vz(x,y)dxdyzmAth,

where A" is the area of the domain D", and Q° being a
coefficient determined only by the geometry of the hole.

By equating this rate of flow with the air leaving the
space between the diaphragm and backplate Q°= . AwP™* (by
A we have denoted the area of the domain D), there results
the value of the pressure p; as

Now, the supplementary force F" for the cell C, due to hole
resistance, can be written as

wPbys, (24)

B. Example: The case of circular holes

In the case of a circular hole of r;—radius, Eq. (22)
becomes
1d ( dvz)_ P

7(; rdr —;L—I/:, for 0$r<r1.

The solution satisfying the condition (23) is

P

vin)=3

and, correspondingly, the rate of flow can be written as
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_TP1 4
Q—8;Lh ry.

In this case there results Q0=r%/8 and, correspondingly, the
supplementary force for a cell 1s

4

r
F'=8muh _%thys' (25)
Ty

C. The optimum number of circular holes

Let us denote by N the number of circular holes of a unit
of area u®. Then, we have

'rrrgN= u?, r%/r%=AR.

By considering the formulas (21) and (25) for the squeeze-
film damping over a cell and the hole resistance, we can
determine™® an optimum number of holes for a given value of
AR, which assures an equilibrium between squeeze film and
holes resistance

Nop= "\ /i(_A_R_l l(AR); E(AR)Z
Pt 2hd) T |2 8
1 12
— 7 In(AR) -2 u?,

and the associated minimum value of the total damping co-
efficient B = F/wPhYs ag

_8\/€,u\/;1 1
Bmin“(_A_R—)' d—[-z—(AR)—g(AR)2

3
0
1 12
_> _2 2
7 In(AR) 8} u-.

In the next sections we shall extend these results for two
different geometries of the holes: the case”of the slits be-
tween solid strips and the case of oval holes.

IV. THE CASE OF PLANAR MICROSTRUCTURES
CONTAINING SLITS

In some cases for protection of microphones planar mi-
crostructures containing periodic slits can be used, i.e., the
limit case of holes as long gaps between rectilinear strips.
This type of structure can also be used as the second elec-
trode in the case of condenser microphones. In fact, planar
microstructures containing parallel slits have been used for
fabricating micromachined capacitive accelerometers.’

We consider the geometry in Fig. 2 containing a periodic
structure of 2Ly—width strips separated by 2r—wide slits.

A. The squeeze-film damping.

In the case where the domain D is a strip parallel to
Ox—axis, 0<y<{L,, we take L, as the reference length.
Equation (15) becomes

d’p

—=12Mw, 0<y<l. (26)
dy
The boundary conditions become
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FIG. 2. A microstructure containing slits.

p(1)=0, (27)

dp

@(O)—O. (28)
The solution of Eq. (26) satisfying the boundary conditions
27), (28) is

p(x)=6M(y*—1)w.

The force on a rectangle of L—Iength of the strip can be
obtained by integration in the form

13
0
Fo=8MulL— wh. (29)
dy
B. The slit’s resistance
Equation (22) becomes in this case
d*v e _P1
dy? wmh '

L0<y<L0+2r, (30)

with the boundary conditions on the slit sides
v.(Lg)=0, v (Lo+2r)=0. 3D

Then, the solution of Eq. (30) satisfying the conditions (31)
can be written as

v:(0)= 5 (= L) (y=Lo=2r).

The rate of flow corresponding to this velocity on a section
of length L of the slit is

2p r L

3uh

There results Q°=r?/3 and formula (24) yields the hole (slit)
resistance as

Q:

6uh(Ly+r)?
el A

r3

Fh wPhys, (32)

C. Optimal strip thickness and designing
relationships

The total mechanical resistance on a backplate strip (of
L width) due to viscosity can be obtained by adding the
resistance due to sqeezing film (29) with the slit resistance
given by formula (32)
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8L8+6(L + )2h
_9 12—
dS 0 r

R= mlL. (33)

We denote now by N the number of the slits on a unit length
u and by AR the area ratio of the plate. Therefore

u
L0+r=ﬁ, (34)
(AR
r=u (35)

Formula (33) gives the damping coefficient B on L—width
of the backplate, as

(1-(AR)? u®  12n N?
BENRZML 3 — I
dy N? (AR)? u

This expression has a minimum value

1—(AR) 3’2\/—/;
Brx]in“"ﬁ#(_—(_AR—) d—gLu,

corresponding to the value of N
_[(AR)(1—(AR))] ¥4
opt— 4 k)
Vi2hdy
The relationship (36) determines the optimum number of
parallel slits in terms of the area ratio AR, backplate thick-
ness h, and average distance dg between backplate and dia-
phragm. Once N, is determined the relationships (34) and
(35) provide the optimum strip and slit widths
1-(AR)
=—1u
opt 2 Nopt

(36)

(AR)
= u.
2N gt

1. Example

Ty

Let us consider as an example: u=1 mm, AR=0.2, d,
=0.005 mm, ~2=0.004 mm. There results

Nop[= 29/mm, Lopt: 0.014 mm,
ropt=0.0035 mm, L=1 mm,

B, =0.1785X 1073 Ns/m.

V. NUMERICAL SIMULATION OF VISCOUS DAMPING:
THE CASE OF OVAL HOLES

A. The squeeze-film damping in the case of periodic
oval holes

We consider the backplate structure in Fig. 3(a). It con-
sists of a periodic pattern of offset oval holes. (By oval we
mean the geometrical form of a rectangle with two half-
circles of r radius added to smaller sides.) The basic domain,
D, we are using to determine the pressure is also shown in
Fig. 3(a) and the corresponding canonical domain D' result-
ing from D by similarity transformation given by the scaling
relationship, is also drawn in Fig. 3(b).
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FIG. 3. (a) An uniform offset system of oval holes. (b) The basic domain
corresponding to the planar microstructure in (a).

We take as the scaling length the distance L, between
two neighbor rows of holes. Consequently, we have in the
domain D', C'E’'=1, and denote: A’C'=a;, A'B'=a’,
A'F'=r', r'Ly=r. We denote again by AR the area ratio of
the plate (the fraction of the hole area to the cell area), and
hence

4r(a—r)+ wr’=(AR) A.

The physical pressure in domain D can be obtained by
considering the physical variables in Sec. II A and equation
in Sec. I1D

2
pphyS(x,y)z — 12#_%13(1 l) phys

p(x,y) denotes the solution of the boundary-value problem

Ap(x,y)=1, in D', (37)

ﬁ(x9y)=0 on Cl’)’

N 38

op(x,y) _ " (38)
on N

Here, C}, is the part of the boundary of the domain D’ where
the pressure is known (the rim of the holes) and Cy, the part
of the boundary-containing segment of symmetry lines.

The viscous force on a cell given by the squeezing-film
damping can be expressed as

S _op, L0
F —24,u,EMaiprphys, (39)
0

cell ™

where the pressure coefficient C,, has the expression

CPZ_J J'D ﬁ(x',y')dx'dy’/ fJ’ dx'dy’. (40)
I3 Dl

Thus, the determination of the squeezing-film damping on a
cell requires the solving of the boundary-value problem (37)
and (38) and calculation of the pressure coefficient C, by
using formula (40).
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FIG. 4. The domain D° considered in determination of the resistance of the
oval holes.

B. The resistance of oval holes

In order to determine the oval holes’ resistance we con-
sider the domain D° in Fig. 4 corresponding to a quarter
fraction of hole, scaled by the width r. In this case the rate of
flow through the hole can be obtained as

Q=f Jthz(x,y)dx dy=%r2A/’Q°(;), (41)

where A" is the area of an oval hole and Q° is

Q(’(-i-l-):——fJDhOﬁz(x’,y’)dx’dy'/fthodX'd}"-
(42)

The function 0 ,(x,y) is the solution of the Poisson equation
A (x,y)=1, in D", (43)

satisfying the boundary conditions

b,(x,y)=0, along FH'BC,

Jv

8_;20’ along FPA°, (44)
v,

—=0, along A°BC.

dy
Now, the supplementary force due to the oval hole re-
sistance F* can be written as

. whA?

= A WP, (45)

The function Q° has been determined numerically. We pre-
ferred a finite element approach in an effort to use programs
familiar to the solid mechanics researchers. In order to model
the Poisson’s equation we used ANSYS 2D steady heat-
transfer elements. Thus, by solving numerically the
boundary-value problem (43), (44), and computing the inte-
gral in (42), there results the function plotted in Fig. 5. The
two limit cases have definite physical meanings: for a=r we
have the case of circular holes in which case Q0= 1/8, while
for a—oo we obtain the slit case. where Q%= 1/3 as in Secs.
HIB and IV B.

C. The optimal number of oval holes for a planar
microstructure

Adding the squeeze-film damping with the oval hole re-
sistance results in the total viscous force on a cell in the form
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FIG. 5. The function Q° for determining the viscous resistance of the oval
holes.

24uliMa)
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dO .

wh A? 1
r2AY 0%alr)

T

— phys
cell w .

Let us now denote by N the number of holes of a unit of area
u®. Then we have

. u2 h rr2
.A=~]-V—, A*=(AR)- A, A=2aL;
1__ 2% o, _&

r* aj(AR)%u? ' a’

2

The total force on u*~ area results in the form

2ha'? R?
(AR)*Q%arr)

4
r ( 6MC, u N | s

aidy N aj
The total viscous damping force has a minimum value for

N=N

opt

N 10_4\/Mu2 N

opt— " 3% .
Vhd}

The corresponding damping coefficient By, =F.. /wP™¥* can
be written as

48h M
Buyin™ \/ y mu’B*. 47

3
0

(46)

The numerical coefficients N* and B* depend only on the
geometry of the oval holes

. V3C,(AR)*Q%alr) 10

; 48
R (48)
PRSI B N ©(9)

aj V(ARQ%ain) ™
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FIG. 6. (a) The numerical coefficient B* for calculating
the minimum damping coefficient for several dimen-
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0.40 sions of the basic domain (m) and holes (k). (b) The
numerical coefficient N* for determining the optimum
number of holes for several dimensions of the basic

domain (m) and holes (k).
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D. Numerical results and designing relationships

The formulas (48) and (49) for determining the numeri-
cal coefficients N* and B* have been applied for certain
hole geometries described by the dimensions of the domain
D*: m=aq, k=a'laj, and for a sequence of values of area
ratio AR between 0.08 and 0.4.

The boundary-value problem (37) and (38) has to be
solved many times; this is why we preferred a more efficient
complex variable boundary element method'* which is doing
all the computation only on the boundary curve.

2946 J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004

The graphs of the coefficients B* and N* are presented
in Figs. 6(a) and (b), respectively. It is evident that for small
values of the area ratio all the geometrical parameters of the
oval pattern are important in determining the minimum value
of viscous damping coefficient. In the case AR>0.15 the
variation of the coefficient B* with k is very slow. Therefore,
the value of this coefficient can be adjusted by choosing the
proper value of hole area ratio AR. On the other hand, the
coefficient N* is very sensitive to values of k; thus, it is
possible by choosing this parameter properly to obtain a per-
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forated planar microstructure satisfying other designing de-
mands.

The presented graphs involve only the geometrical pa-
rameters of the oval holes: AR, m=a;, k=a’'l/a;. Conse-
quently, they can be used for calculating the damping coef-
ficient and the optimum number of holes for different
distances between plates, backplate thicknesses, frequencies,
and viscosities.

Once the values of the parameters AR, a{ , and a’ are
decided (and implicitly the values of numerical coefficients
B* and N*), the number of holes is given by the relationship
(46) and the physical dimensions of the cell by formulas

u
by =
7 \/2a1Nopt
alo:aiblo’ aoza’blo’
2a, (2—7/2)(AR)u
r,= 1-\/1-——
4—a aoN opt

VI. CONCLUSIONS

In the case of small area ratio the optimal geometry of
the holes of planar microstructures is determined by all the
geometrical parameters of the structure.

For AR>0.15 the influence of the other geometrical pa-
rameters other than AR on the damping coefficient is very
slight. Therefore, it is possible to adjust the holes pattern to
fulfill other designing criteria as number of holes, structure
resistance, penetration of sound waves, etc. For example, a
protecting surface having oval holes rather than circular ones
will be more appropriate for protecting a microphone dia-
phragm against dust particles and water drops.

The designing formulas in the case of oval holes contain
the constants B* and N* depending only on the geometry of
the holes. These coefficients can be computed by solving the
Poisson’s equation (with certain mixed boundary conditions)
by using the appropriate software. Otherwise, the coefficients
can be evaluated by using the graphs provided in the paper.
Once B* and N* are determined, the total viscous damping
and the optimum number of holes can be obtained for vari-
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ous backplate thicknesses, distances between plates, frequen-
cies, and viscosities.
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